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Abstract: 

The increasing global focus on renewable energy has driven 

innovation in harvesting energy from unconventional sources, 

including human footsteps. Piezoelectric and similar technologies 

offer the potential to convert mechanical energy from footfalls into 

electrical power, yet the prediction and optimization of energy output 

remain complex due to the variability in human movement and 

environmental factors. This study presents a deep learning-based 

regressor designed to predict energy output from footstep power, 

addressing the limitations of traditional systems through advanced 

modeling techniques. Human energy harvesting, particularly from 

footsteps, is an emerging field that leverages piezoelectric materials 

to generate electricity. These systems are increasingly integrated into 

floors of high-traffic areas like train stations and malls to produce 

sustainable energy. However, accurately predicting energy yield has 

been a challenge due to the interplay of variables such as individual 

weight, gait patterns, footwear, and surface material. Earlier attempts 

to predict energy output relied heavily on physics-based models, 

which, while grounded in theoretical principles, often failed to 

capture the nuances of real-world variability. With the advent of data- 

driven approaches, machine learning has emerged as a powerful tool 

for modeling nonlinear relationships inherent in footstep power 

generation. The core problem is the accurate prediction of energy 

output generated by footsteps in varying conditions. Traditional 

models fail to account for human and environmental variability 

effectively, leading to suboptimal system designs and energy 

inefficiencies. The development of a deep learning regressor for 

predicting energy output is crucial for optimizing the design and 

deployment of footstep power generation systems. By leveraging 

neural networks' ability to model complex, nonlinear relationships, 

this approach can enhance prediction accuracy, adapt to variable 

conditions, and reduce reliance on expensive calibration processes. 
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1. INTRODUCTION 

 
I In the pursuit of sustainable energy sources, innovative approaches 

to electricity generation have become increasingly relevant. Among 

these, harnessing the kinetic energy from human footsteps has 

emerged as a promising avenue. Known as footstep energy harvesting 

or piezoelectric energy generation, this concept involves converting 

mechanical energy from footsteps into electrical energy using 

piezoelectric materials. By embedding these materials into walkable 

surfaces like floors or sidewalks, the pressure exerted by individuals 

walking can be transformed into usable electricity. This paper delves 

into the theoretical underpinnings, technological advancements, 

practical implementations, and potential applications of footstep 

energy harvesting systems, shedding light on this burgeoning field 

and 

 

 

its implications for sustainable energy generation. At its core, 

footstep energy harvesting relies on the piezoelectric effect exhibited 

by certain materials, where mechanical stress induces an electric 

charge. By strategically integrating piezoelectric elements such as 

crystals or polymers into pedestrian pathways, the energy produced 

by foot traffic can be captured and converted into electrical power. 

Development of efficient footstep energy harvesting systems entails 

considerations of material selection, design optimization, energy 

conversion efficiency, and system integration. Researchers have 

explored diverse piezoelectric materials and configurations to 

maximize energy output while ensuring durability, reliability, and 

safety. Advancements in nanotechnology and material. 

In the current quest for sustainable energy solutions, harnessing 

energy from human movement through footstep power generation 

presents a promising avenue. However, accurately predicting the 

energy output and understanding the impact of step location (e.g., 

Center, Edge, Corner) on piezoelectric tiles remains a challenge. 

Variations in human weight, stride length, step force, and 

environmental conditions significantly affect energy generation. 

Existing systems often rely on static assumptions or pre-defined 

models, which fail to account for real-world variability. This leads to 

suboptimal tile design, placement, and energy harvesting efficiency. 

The problem is further compounded when multiple footsteps occur in 

quick succession or in areas with high foot traffic, creating complex 

energy output patterns. Developing a reliable machine learning model 

to predict energy output and classify step location can address these 

challenges. By leveraging data-driven insights, such models can 

optimize the performance and deployment of footstep power tiles. 

This will enable researchers and engineers to design systems that 

maximize energy capture, even in diverse and dynamic conditions 

2. LITERATURE SURVEY 

A detailed study was done on alternate methods for generation of 

electricity and non-conventional energy sources were done. An 

Elsevier research paper provides details of Hybrid nano generator 

using tribo electric, Piiezo electric with different structures and 

optimized system based on available space using shoe sole [1]. An 

article from `Expert skip hire’ explains about generation of electricity 

by up and down movement on sustainable dance floor [2]. A 

Research gate paper provides the details of Power generation from 

Piezoelectric Footstep technique using rack and pinion system [3]. 

An article from Citylab shows the implementation of street lights 

using pedestrian powered electricity [4]. A research study on 

renewable energy for sustainable development in India by Charles 

and M.A.Majid. This paper explains current status, future prospects 

and challenges in the sector [5]. 

A paper from Strain journal explains estimation of Electric charge 

output using Piezo electric energy harvesting [6]. Electricity from 

footsteps, by SS Taliyan, BB Biswas, RK Patil, GP Srivatsav and 

Basu, This paper discusses the basic Engineering and operating 

mechanism of Piezo electric crystal, model and generation through 
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footsteps [7]. Yuki Bunda, Kajiro Watnabe, Kazuyuki kobayashi, 

Yoshike Kurihara, `Measurement of static electricity generated by 

human walking’ IEEE explore, 14thOctober, 2010[8]. 

A Research paper on application of piezoelectric transducer in energy 

harvesting in the pavement by Xiaochen Xu, Dongwei Cao. This 

paper states that utilization Piezo electric transducers in green energy 

have bright future [9]. Japanese telecommunications giant, NTT, has 

developed the shoes that will generate electricity from the kinetic 

energy generated by walking. Our team has put a lot of effort on 

reference books, international journals and articles for development 

of this project. Gas turbine power output mainly depends on the 

ambient parameters such as ambient temperature, atmospheric 

pressure, and relative humidity whereas steam turbine power 

output has a direct relationship with the vacuum at the exhaust. 

[10]. 

Gas turbine derivatives, such as combined cycle power plants 

(CCPP) are being established all over the world to full fill the 

demand for electrical energy considering both economic and 

environmental concerns. It has been found that the three ambient 

predictor variables: ambient temperature (AT), ambient pressure 

(AP), and relative humidity (RH) affects while exhaust vacuum (V) 

affects the production of steam turbines[11]. Hence, the objective 

of this paper is to study the association of the average ambient 

variables with the hourly yield of electrical power output and find 

out reliable predictors for CCPP that would help inefficient 

production. This in turn would help in the proper utilization of 

resources in terms of maximum yield and minimum cost of 

roduction[12]. The main motivation for this study is that there 

exist thermodynamical studies to predict the output of a CCPP. 

However, detailed analysis of a system by using 

thermodynamical approaches [13] is a computationally intense 

effort, and sometimes the result of such analysis might be 

inaccurate due to the interaction of several assumptions being 

considered and the nonlinear nature of the governing equations. On 

the other hand, machine learning models have gained steam in recent 

years [14]. 
 

 

3. PROPOSED METHODOLOGY 

The project focuses on leveraging machine learning models to predict 

energy output and classify the location of footsteps on power- 

generating tiles. These tiles, often embedded with piezoelectric 

materials, generate electrical energy from mechanical pressure, such 

as footsteps. Accurate prediction of energy output and classification 

of step location is crucial for optimizing energy harvesting systems. 

1. Objective 

The primary goal is to build a reliable machine learning pipeline to: 

1. Predict the energy output from footsteps. 

2. Classify the location of footsteps (e.g., Center, Edge, 

Corner) to optimize tile design and placement. 

2. Motivation 

• Sustainability: 

Harnessing energy from human movement is an innovative 

step toward renewable energy solutions, especially in high- 

traffic areas. 

• Optimization Needs: 

• Variability in human movement and environmental 

conditions creates challenges in predicting energy 

generation, necessitating data-driven approaches. 

• Applications: 

These systems can be applied in smart cities, public 

transportation hubs, and other urban areas to supplement 

energy needs. 

3. Dataset 

The dataset (power_tile_data.csv) contains features representing 

physical, environmental, and sensor data related to footsteps, as well 

as the target variable step_location. The data provides information for 

training and evaluating the models. 

4. Workflow 

Step 1: Dataset Preparation 

• Load and inspect the dataset for missing values, duplicates, 
and data types. 

• Encode categorical features (e.g., step_location) into 
numerical values using LabelEncoder. 

Step 2: Feature Selection 

• Separate the dataset into: 

o Features (X): Input variables for prediction. 

o Target (y): The output variable (step_location). 

Step 3: Train-Test Split 

• Split the data into training and test sets (80-20 split) to 
ensure robust evaluation. 

Step 4: Model Training 

• Train multiple machine learning models: 

Huber Regressor: A robust regression model that minimizes the 

impact of outliers. It achieved a Root Mean Squared Error (RMSE) 

of 0.22 and an R²-score of 0.88, indicating a strong predictive 

capability while maintaining resistance to noise in the data. 

Feedforward Neural Network (FFNN): A deep learning-based 

approach capable of capturing complex patterns in data. It achieved a 

significantly lower RMSE of 0.04 and an R²-score of 1.00, 

demonstrating superior accuracy and a near-perfect fit to the dataset. 

Step 5: Model Evaluation 

• Use a custom function (calculateMetrics) to evaluate model 
performance: 

o Compute metrics: Accuracy, Precision, Recall, 
F1-Score. 

o Display a confusion matrix for visual analysis of 
predictions. 

Step 6: Model Persistence 

• Save trained models using joblib to avoid re-training and 
improve efficiency. 

• Reload models when predictions are required. 

Step 7: Predictions on New Data 

• Load unseen test data (test_data.csv) for prediction. 

• Make predictions using the best-performing model (FFNN 
in this case). 
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• Map numerical predictions back to categorical labels for 
interpretability. 

 

 

Figure 4.1: Proposed system Block Diagram 

 

 

Figure 4.1 shows the proposed system block diagram for predicting 

energy output from footstep data using machine learning and deep 

learning models. The system begins with a dataset in .csv file format, 

which undergoes data processing to clean and prepare the data. After 

that, exploratory data analytics (EDA) is performed to understand 

patterns and relationships within the data. The processed data is then 

used to train two different models: a feed-forward neural network 

(FFNN) for deep learning and a Huber model for machine learning. 

The performance of these models is evaluated using performance 

metrics such as root mean square error (RMSE) and R-squared (R²). 

Based on the performance evaluation, the most accurate model is 

used for energy output prediction. This system aims to provide a 

more accurate and efficient energy prediction compared to traditional 

methods. 

 

 

4. EXPERIMENTAL ANALYSIS 

The project is designed to predict energy output (in milliwatts) from 

footsteps using machine learning and deep learning techniques. The 

workflow includes data preprocessing, model training, performance 

evaluation, and prediction on test data. 

1. Data Loading and Preprocessing 

• The dataset containing sensor readings and footstep impact 
details is loaded. 

• Checks for missing values and duplicates are performed. 

• The Power(mW) column is set as the target variable, while 

the other features (such as step location and force) are used 
as inputs. 

• Categorical features like step location are converted to 
numerical form using label encoding. 

• The data is split into training and testing sets to evaluate 
model performance. 

2. Model Selection and Training 

Huber Regressor 

• A robust linear regression model that is resistant to outliers. 

• Trained on the dataset and saved as a model file to avoid 
retraining. 

Feedforward Neural Network (FFNN) 

• A deep learning model with multiple dense layers to 
capture complex relationships. 

• Uses ReLU activation functions for non-linearity. 

• Trained with Adam optimizer and Mean Absolute Error 
(MAE) loss function. 

• The trained model is saved and used for future predictions. 

 

 

Random Forest Regressor (RFR) 

• A tree-based ensemble model that improves predictions by 
combining multiple decision trees. 

• The FFNN model is used as a feature extractor, and its 
output is passed to the Random Forest Regressor for further 
learning. 

3. Model Evaluation 

• Regression metrics such as Mean Absolute Error (MAE), 
Mean Squared Error (MSE), Root Mean Squared Error 

(RMSE), and R² Score are calculated. 

• A scatter plot is used to visualize the difference between 
actual and predicted values. 

4. Making Predictions on New Data 

• A test dataset (without power output values) is loaded. 

• The trained FFNN model makes predictions on this new 
dataset. 

• The predicted energy output values are stored for analysis. 

Key features 

• Multiple machine learning and deep learning models are 
implemented. 

• FFNN is combined with RFR for better performance. 

• Models are saved and reloaded to avoid redundant training. 

• The project provides a scalable approach for predicting 
energy from footsteps. 

7.2 Dataset Description: 

The dataset used in the project contains sensor readings from footstep 

power tiles, which generate electrical energy when pressure is 

applied. The goal is to analyze the data and predict the energy output 

based on various input features. 

1. Features in the Dataset 

Feature Name Description 

 

Step Location: 
The position where the footstep lands on the 

tile (e.g., Center, Edge, Corner). 

 

StepFrequency (Hz): 
The number of steps per second, which 

influences energy production. 

 

WeightofPerson(kg): 
The weight of the individual applying the 

step. 

Temperature (°C): The  ambient  temperature,  which  might 
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Feature Name Description 

 
influence material flexibility and efficiency. 

Power Output 

(mW): 

The target variable representing the generated 

energy in milliwatts. 

 

 

2. Dataset Properties 

• Data Type: Numerical & Categorical 

• Total Rows: Varies based on dataset size 

• Total Columns: Around 10 (including target variable) 

• Missing Values: Checked and handled during 
preprocessing 

• Duplicates: Identified and removed to avoid redundancy. 

3. Purpose of the Dataset 

• Understanding how different factors (force, weight, 
location) affect power generation. 

• Training machine learning and deep learning models to 
predict energy output from sensor readings. 

• Optimizing tile placement and material for maximum 
energy efficiency. 

 

 

 

 

7.3 Result Description: 

 

 

 

 

Figure 7.3.1: Uploading a Sample Dataset 

Figure 7.3.1 shows a sample dataset uploaded for energy output 

prediction from footsteps. The dataset consists of five columns: 

voltage (v), current (uA), weight (kgs), location, and power (mW), 

with a total of 103 rows of data. The voltage and current values are 

captured based on the footstep impact, while the weight and location 

(center or edge) provide additional information to enhance prediction 

accuracy. The power (mW) represents the energy output generated 

from each footstep. This dataset is crucial for training and testing 

machine learning and deep learning models to predict energy output. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3.2: Heat map for column importance 

Figure 7.3.2 shows a heat map representing the correlation between 

different columns of the dataset used for energy output prediction. 

The heat map helps to understand the relationship between variables 

such as voltage, current, weight, location, and power. The color 

intensity indicates the strength of the correlation, with lighter shades 

representing higher positive correlations and darker shades 

representing lower or negative correlations. It can be observed that 

power (mW) has a strong positive correlation with voltage and 

weight, while the location shows a negative correlation with power. 

This analysis is useful in determining the significant factors 

influencing energy output. 
 

 

Figure 7.3.3: Displaying the regression report of Huber model. 

The Figure 7.3.3 displays evaluation metrics for a Huber Regressor 

model. The Mean Absolute Error (MAE) is 0.09, indicating a small 

average prediction error. The Mean Squared Error (MSE) is 0.04, 

showing minimal variance in errors. The Root Mean Squared Error 

(RMSE) is 0.21, representing low deviation in predictions. The R² 

Score is 0.88, meaning the model explains 88% of the variance in the 

target variable. These metrics suggest the model has high accuracy 

and low error, making it effective for predicting energy output from 

footstep power. 
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Figure 7.3.4: Illustration of confusion matrix obtained using Huber 

model. 

Figure 7.3.4 shows the comparison of predicted values versus actual 

values obtained using the Huber Regressor model. The graph 

illustrates the performance of the model, where the x-axis represents 

the actual values and the y-axis represents the predicted values. The 

blue data points represent the actual observations compared to the 

model's predictions. The red dashed line signifies the ideal prediction 

line where the predicted and actual values would be equal. The closer 

the data points are to the red line, the better the model's accuracy. 

This plot indicates that the Huber Regressor model has performed 

well in minimizing the error between actual and predicted values. 

 

 

 

Figure 7.3.5: Displaying the regression report of FFNN model. 

The Figure 7.3.5displays the performance metrics of an FFNN 

(Feedforward Neural Network) model. The Mean Absolute Error 

(MAE) is 0.03, indicating minimal average error. The Mean Squared 

Error (MSE) is 0.00, suggesting negligible variance in predictions. 

The Root Mean Squared Error (RMSE) is 0.04, showing very low 

deviation. The R² Score is 1.00, meaning the model perfectly predicts 

the target variable. This implies that the FFNN model has achieved 

an ideal fit for the dataset, likely indicating overfitting. 

 

Figure 7.3.6: Illustration of confusion matrix obtained using FFNN 

model. 

Figure 7.3.6 shows the comparison of predicted values versus actual 

values obtained using the Feed Forward Neural Network (FFNN) 

model. The graph demonstrates the model's performance, where the 

x-axis represents the actual values, and the y-axis represents the 

predicted values. The blue data points indicate the actual observations 

compared to the model's predictions, and the red dashed line 

represents the ideal prediction line where the actual and predicted 

values are equal. The close alignment of data points along the red line 

signifies that the FFNN model has provided accurate predictions with 

minimal error. 

 

 
Model name RMSE 𝑅2-score 

Huber Regressor 0.22 0.88 

FFNN 0.04 1.00 

 

Table 1: Comparison of all models. 

The Table 1 compares the performance of two regression models: 

Huber Regressor and FFNN (Feedforward Neural Network). The 

Huber Regressor has an RMSE of 0.22 and an R²-score of 0.88, 

indicating good but not perfect predictive accuracy. In contrast, the 

FFNN model achieves an RMSE of 0.04 and an R²-score of 1.00, 

meaning it perfectly fits the data. The lower RMSE of FFNN 

suggests significantly better prediction accuracy. However, the 

perfect R²-score may indicate overfitting, meaning the model might 

not generalize well to unseen data. 



IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501 

Vol.15, Issue No 2, 2025 

 

 

 

 

795  

5. CONCLUSION 

The project demonstrates the effective use of Deep learning, 

particularly FFNN, to predict energy output and classify step 

locations in footstep power generation systems. By addressing the 

limitations of traditional methods, this data-driven approach provides 

robust, accurate predictions and insights. Through preprocessing, 

model training, and performance evaluation, the project establishes a 

reliable framework for optimizing piezoelectric tile design and 

deployment. 

The integration of advanced algorithms enables the system to handle 

real-world variability, such as differences in step force, location, and 

environmental factors. The results highlight the potential of machine 

learning to enhance renewable energy systems, contributing to smart 

city infrastructure and sustainable energy solutions. 

The enhancement of feature engineering can significantly improve 

the accuracy and robustness of the predictive model. By 

incorporating additional factors such as stride length, walking speed, 

and weight distribution, the system can generate more precise energy 

output estimations. Furthermore, the development of multi-tile 

systems can optimize energy harvesting in large-scale deployments 

by predicting energy output for interconnected tiles, making it highly 

effective in high-traffic areas like shopping malls and public transport 

hubs.A major advancement in the project would be its real-time 

implementation by integrating the predictive model with IoT devices. 

This would allow continuous monitoring and adaptive energy 

management, improving efficiency and usability. Additionally, 

combining footstep power with other renewable sources, such as 

solar or kinetic energy, can lead to the creation of hybrid energy 

systems that provide a more sustainable and reliable power supply. 

Exploring advanced machine learning models like Convolutional 

Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) 

could further enhance prediction accuracy by capturing complex 

patterns in footstep energy generation data. Additionally, developing 

personalized energy profiles based on demographic and behavioural 

data can provide tailored insights, allowing optimization at an 

individual level. 
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